Inorganic Review Topics

Last Update July 2, 2012

The CHEM 129/130/131 outcome statements represent the minimal level of knowledge needed for this course in these areas. The ACS has prepared a broad outline of the material to be covered in various chemistry courses. This information, along with the outcome statements for CHEM 129/130/131 may be found on the Chemistry Department's Assessment Page (http://chemlab.truman.edu/Assessment/Assessment.asp). Please refer to your physical chemistry, organic and quantitative analysis notes and texts for more information.

•Nuclear Properties

- >Isotopes
- >Subatomic particles
- >Atomic weight and how to calculate it
- >Nuclear magnetic moment

Periodic Table

- >Nomenclature
- >Groupings of elements
- >Metals vs. non-metals
- >Allotropes
- >Basic descriptive chemistry of the elements (standard states, stoichiometry of compounds, etc.)

•Nomenclature

>Naming of simple ionic and molecular compounds and coordination compounds

•Periodic Trends

- >Electronegativity
- >Electron affinity and ionization energies
- >Reasons for these trends

Thermodynamics

 $>\Delta H$, ΔS , ΔG what they are, their chemical meaning and how they are connected under different conditions

•Equilibrium

- >Proper thermodynamic form of K and the approximations needed to get to a useful form
- >Relationship of ΔG to K
- >Manipulations of equilibrium expressions
- >Calculations to determine *K* or amount/concentration of a reactant/product present at equilibrium

•Acid-Base Chemistry

- >Arrhenius, Bronsted-Lowry, Lewis models
- >Application of equilibrium to describe acid-base chemistry

•Electrochemistry

- >Galvanic cells and definitions associated with galvanic cells (anode, cathode, salt bridge, etc.)
- >Standard reduction potentials and their meaning
- >Determination of a cell potential from two standard reduction potentials, determination of a standard reduction potential from two, or more, other standard reduction potentials
- >Nernst equation
- >Relationship of ΔG to E^0
- >Voltammetry

•Kinetics and Mechanism

- >Rate laws and how to determine them using integrated rate laws and other methods
- >Integrated rate laws (derivation and use)
- >How to write mechanisms (both stoichiometric and intimate)
- >Arrhenius equation, meaning of an activation energy and determination of a reaction's activation energy

•Quantum Mechanics

- >Wavefunctions and operators
- >Schrödinger equation and its solutions for hydrogen
- >Angular momentum quantization
- >Basic idea of interaction of light with matter (see spectroscopy)

Bonding

- >Electronegativity: definition and relationship to an element's ionization energy and electron affinity
- >Lewis dot structures and VSEPR (using to predict molecular properties)
- >Valence Bond Theory
- >Molecular Orbital Theory
- >Ionic bonding and solid state structure
- >Intermolecular interactions and their effects

•Group Theory

- >Operations
- >Elements
- >Character tables

Spectroscopy

- >Bohr frequency condition ($\Delta E = h v$), $\lambda v = c$
- >Basics (equations and selection rules) of vibrational and rotational spectroscopy
- >Predict NMR peak splittings, calculate coupling constants and assign ¹H, ¹³C NMR spectra using standard 1-D and 2-D (e. g., DEPT) methods