I. Hydrate test - Observations

II. Percent of Water in a Hydrate: MgSO₄

You have a *minimum* of 4 masses to measure:

Descriptions	Mass Labels	Your Measured Masses
Mass of empty, dry crucible + cover	M1	
Mass of crucible + cover + sample		
BEFORE heating	M2	
Mass of crucible + cover + sample AFTER		
first heating (5 min gentle + 10 min	M3	
intense), AND cooling to RT		
Mass of crucible + cover + sample AFTER		
second heating (5 min intense), AND	M4	
cooling to RT		
M3 and M4 must agree within 0.01 g!		
If not, heat and cool again, and record	M5	
another mass of crucible + cover + sample		
AFTER third heating AND cooling to RT!		

Now use those masses to calculate these values.

Descriptions	How to Use Value Labels	Your Calculated Values
Initial hydrated sample mass	M2 - M1	C1= g
Anhydrous sample mass	Final M (M4 OR M5) - M1	C2= g
Mass of H ₂ O lost	C1-C2	C3= g
Moles of anhydrous MgSO ₄	C2 g/(120.366 g/mol)	C4= mol
Moles of water lost	C3 g/(18.015 g/mol)	C5= mol
Ratio of mol water : mol MgSO ₄	C5/C4	C6= : 1
Molecular formula of hydrate	Use C6 in formula	
Name of hydrate		

HYDRATES DATA SHEET

Name: _____

Review Questions

- 1. Show how to calculate the molar mass of water.
- 2. What is a good use of cobalt chloride, since it changes depending on its hydration level?
- 3. Why did you slant the test tube downward when you heated the copper sulfate?
- 4. If table salt were purchased by the pound, would you prefer to purchase salt that is a big clump or is a fine powder? Why?
- 5. Washing soda, Na₂CO₃-10H₂O, is used in many places to launder clothes. What weight percent of washing soda is water? Show your work!
- 6. A 5.000 g sample of an unknown hydrate was heated for a while and then cooled to RT. The remaining sample weighed 3.825 g. Show your work to answer these questions.
 - How many moles of water were driven off?
 - How many moles of MgSO₄ were in the anhydrous sample?
 - What is the ratio of moles of water to moles of MgSO₄?
 - What is the molecular formula of the hydrate?
- 7. The hydrated form of copper sulfate is CuSO₄-5H₂O. Show your work to compute how many grams of water these amounts of the anhydrous salt would absorb.
 - 0.500 mol of anhydrous CuSO₄ would absorb _____ g of H₂O

• 50.0 g of anhydrous CuSO₄ would absorb _____ g of H₂O