A. The Glass Transition Instructor Demonstration

- 1. Describe the behavior of the rubber ball in its cold "rubber" phase
- 2. Describe the ball in its "glass" phase
- 3. Describe the behavior of the ball in its warm "rubber" phase
- 4. What happened to the molecules in the polymer as it warmed up? Which phase do they move more freely in?

Observations below Tg

- 1. Describe the change in the behavior of the polymer on the tape as it warms
- 2. Record the bounce-height data every 30 sec for 6 min

Time (s)	Bounce height (cm)	Time (s)	Bounce height (cm)	Time (s)	Bounce height (cm)

3. Make a graph of bounce height (Y axis) versus time (X axis). Remember to put numbers and units on the axes and make the graph as large as you can.

																-		
\vdash																		
\vdash							 						 			-		\vdash
┝──					<u> </u>						<u> </u>					<u> </u>		<u> </u>
																	-	
				-													-	
\vdash					-					-							-	
\vdash				-	-						-						-	-
<u> </u>					<u> </u>						<u> </u>						-	<u> </u>

- 4. From the graph, about what time is the glass-transition temperature (T_g) of the rubber ball reached? How can you tell?
- 5. In which phase are the molecules in the ball locked into place? How can you tell?
- 6. Should T_g for an automobile tire be below or above room temperature? Why?

B. Dilatancy

- 1. Describe the starch before putting it into suspension. What does it look like and how does it behave?
- 2. Describe the starch in suspension. What does it look like, act like, with no external forces applied?
- 3. How does the suspension act when a rubber ball is dropped on it or it is tapped with a glass rod?
- 4. How does the suspension act when the same ball or rod is set gently upon it?
- 5. How does the behavior of the starch suspension demonstrate dilatancy? Under which conditions do the molecules in the suspension move more freely? How can you tell?